Septin 8 is an interaction partner and in vitro substrate of MK5.
نویسندگان
چکیده
AIM To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5 (MK5). METHODS Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners. The binding of putative partner was further examined by glutathione S-transferase (GST) pull-down, co-immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis. In vitro kinase and peptide array assays were used to map MK5 phosphoacceptor sites on the new partner. Confocal microscopy was performed to study the subcellular localization of MK5 and its partners. RESULTS Septin 8 was identified as a novel interaction partner for MK5 by yeast two-hybrid screening. This interaction was confirmed by GST pull-down, co-immunoprecipitation and FRET analysis. Septin 5, which can form a complex with septin 8, did not interact with MK5. Serine residues 242 and 271 on septin 8 were identified as in vitro MK5 phosphorylation sites. MK5 and septin 8 co-localized in the perinuclear area and in cell protrusions. Moreover, both proteins co-localized with vesicle marker synaptophysin. CONCLUSION Septin 8 is a bona fide interaction partner and in vitro substrate for MK5. This interaction may be implicated in vesicle trafficking.
منابع مشابه
The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology.
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse...
متن کاملComparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5
The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD)...
متن کاملActivation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK), which is regulated by protein stability. However, its function is unknown and no physiological substrates for ERK3 have yet been identified. Here we demonstrate a specific interaction between ERK3 and MAPK-activated protein kinase-5 (MK5). Binding results in nuclear exclusion of both ERK3 and ...
متن کاملNew insights into the activation, interaction partners and possible functions of MK5/PRAK.
MAP kinase-activated protein kinase 5 (MK5) was first described as a downstream target of the p38 MAP kinase pathway leading to its alternative acronym of p38-regulated/activated protein kinase (PRAK). However, since the discovery that MK5 is a bona fide interaction partner of the atypical MAP kinases ERK3 and ERK4 and that this interaction leads to both the activation and subcellular relocalis...
متن کاملIn vitro evaluation of the effects of Lavandula officinalis and Origanum vulgare essential oils on ruminal fermentation using concentrate and roughage type substrates
The aim of this research was to study the in vitro effect of Lavandula officinalis (LEO) and Origanum vulgare (OEO) essential oils on rumen fermentation using a concentrate type substrate (CTS) and roughage type substrate (RTS). Six Mehraban ewes were divided into 2 groups and fed a concentrate type or roughage type diet, and used as rumen fluid donors. Each essential oil (EO) was evaluated sep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- World journal of biological chemistry
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2012